Unstoppable Data for Unstoppable Apps: DATAcoin by Streamr

streamr

July 25th, 2017
Version 1.0

This whitepaper is for information only and does not constitute an offer or any kind of investment
advice. Any element of this whitepaper may undergo significant changes as the project further develops.

AN
—_—
s

(Dapps

Data marketplace

g Computation
..‘ Storage

Unstoppable Data

mE D E

Streamr vision

Streamr delivers unstoppable data to unstoppable applications. It is the real-time data backbone
of the global supercomputer. It is a decentralized network for scalable, low-latency,
untamperable data delivery and persistence, operated by the DATAcoin token. Anyone — or
anything — can publish new data to data streams, and others can subscribe to these streams to
power Dapps, smart contracts, microservices, and intelligent data pipelines.

To incentivize user participation in the network, there's a built-in mechanism for data
monetization. Valuable data from security exchanges, connected devices, 10T sensors, and
social media can be offered to companies, developers, and private citizens. Machines can
autonomously sell their data, get paid, and purchase the data they require. A global market for
real-time data emerges, with built-in data provenance, encryption, and access control.

Alongside the decentralized data network and marketplace, the full Streamr stack includes a
powerful analytics engine and a Ul for rapid development of real-time Papps. Data streams,
smart contracts, and decentralized computing resources can be interconnected in a low-code
environment using high-level building blocks. Streamr will be the easiest place to create
real-time, data-driven, and trustworthy blockchain applications.

A revolution is taking place where centralized cloud services are one by one being superseded
by tokenized, decentralized solutions. Golem, for example, replaces Azure Virtual Machine, and
IPFS replaces Azure Blob Storage. Streamr is proud to join the revolution by providing a
decentralized solution to messaging and event processing, replacing platforms such as Azure
EventHub and Azure Stream Analytics.

1. Background

Real-time data will increasingly turn into a commaodity in the coming years. Huge volumes of
timestamped data is being generated by sensors and connected devices in manufacturing, the
service sector, and the entire supply chain which underlies the modern economy, with much of
the data generated in a streaming fashion?2.

The amount of data is increasing exponentially along the growth of loT and the ubiquity of
connected devices. In the global loT market, IHS Markit forecasts® that the installed base will
grow from 15.4 billion devices in 2015 to 30.7 billion devices in 2020 and to 75.4 billion in 2025.
Much of the newly generated data is valuable: It can be used to optimise manufacturing
operations, track assets with increasing accuracy, target existing consumer services with high
granularity, and create entirely new services and business models.

At the same time, there is a megatrend in motion towards the next generation of the computing
stack. In a distributed future, the backend code of decentralized apps — or Papps* — runs in
peer-to-peer networks. Ethereum is a Bapp in itself, so is Golem, and there are many more in
development.

However, Dapps do not run in isolation: They need external data to function. As it is, storage
and distribution of real-world data remain centralised, and DPapps remain liable to all the known
problems: Concentration of power, lack of robustness, and vulnerability to cyber attacks.

To be sure, you can already store data in the blockchain. There are also decentralized file
storage apps such as IPFS, Swarm, and Storj, and databases like BigchainDB are starting to
emerge. While such solutions are surely part of the new decentralized fabric, they don't really
provide an answer to cases where real-time data is needed in any significant volumes. The
chain is not designed for high throughput or low latency, it does not scale, and storage is
expensive.

What is needed is a natively decentralized data backbone as a complement to decentralized
apps. This real-time data backbone will be the missing link, and the link that we want to help
provide. The infrastructure we create consists of a technology stack which helps connect and

' Susan O'Brien: "5 Big Data Trends Shaping the Future of Data-Driven Businesses", Datameer, 11 May 2016
(https://www.datameer.com/company/datameer-blog/5-big-data-trends-shaping-future-data-driven-businesses/)

2 Tony Baer: "2017 Trends to Watch: Big Data", Ovum, 21 November 2016
(https://ovum.informa.com/~/media/Informa-Shop-Window/TMT/Files/Whitepapers/2017_Trends_to_Watch_Big_Data
.pdf)

3 Sam Lucero: "loT Platforms: enabling the Internet of Things", IHS Markit, March 2016
(https://cdn.ihs.com/www/pdf/enabling-IOT.pdf)

4 For a definition of Dapps, see Johnston et al.: The General Theory of Decentralized Applications
(https://github.com/DavidJohnstonCEO/DecentralizedApplications)

incentivise computers in a global peer-to-peer (P2P) network. This is a network which provides
low-latency, robust and secure data delivery and persistency, and all at scale. Papps of the
future are fuelled by data, and our mission is to make sure that the data keeps on flowing.

We also create a market for real-time data. In the data market, anyone can publish events to
data streams, and anyone can subscribe to streams and use the data in decentralized apps.
Much of the data is free, but where that's not the case, the terms of use are stored in Ethereum
smart contracts. A digital token — a DATAcoin — is needed to access and operate the data
market, and to compensate nodes in the P2P network. Subscribers pay for the data with the
token, and data producers and network participants are reimbursed automatically and securely.

Our stack is built on a decentralized transport layer. Apart from greater robustness, resilience
and fault tolerance, decentralization facilitates openness, transparency, and community building.
The power over data is not with large corporations like Google, Amazon, Microsoft, and IBM.
The network consists of a multitude of data producers, data consumers, and message broker
nodes in-between. You make a reputation for yourself and earn good karma by contributing to
data exchange and by helping run the network to everyone’s benefit.

We believe that sustained growth of the blockchain community will be facilitated by having a
good usability layer in place. Tools are needed so that non-experts can create secure smart
contracts, and connect those contracts and Papps to reliable data sources. We will help build
the required toolkit by providing a visual editor, wrappers, and templates. In short, we want to be
the place to go for anyone who's in the business of creating data-driven decentralized services.

In the rest of this paper we describe the Streamr technology stack, define the role of the digital
token, explain the status quo, present the R&D roadmap, and introduce the team.

2. Streamr stack

The decentralized real-time data pipeline is built on top of a multi-layered technology stack:

e Streamr Editor constitutes a usability layer and toolkit which enables rapid development
of decentralized, data-driven apps.

e Streamr Engine is a high-performance event processing and analytics engine that
executes off-chain in a decentralized fashion. It can run on a decentralized computing
provider such as Golem.

e Streamr Data Market is a universe of shared data streams which anyone can contribute
and subscribe to.

e Streamr Network is the data transport layer, defining an incentivized peer-to-peer
network for messaging in the decentralized data pipeline.

e Streamr Smart Contracts enable nodes in the Streamr network to reach consensus,

hold stream metadata, handle permissioning and integrity checking, and facilitate secure
token transfers.

The following section goes through each layer of the stack (see Figure 1) in detail, following a
top-down approach.

Usability

Visual Programming Streamr Editor
Fast Protatyping

Event Processing
Real-time Analytics Streamr Engine
Automation

Monetisation

Discovery Streamr Data Market
Community

Delivery Computing

Storage Streamr Network Resource
Provenance Provider

{e.g. Golem)

Authorisation Event Storage
Tokenisation Streamr Smart Contracts (e.g. IPFS, decentralized
Integrity DB)

Ethereurn

Figure 1. Streamr technology stack.

2.1 Streamr Editor

Streamr Editor enables rapid development of data-driven smart contracts, lowers
the threshold for Dapp creation, and comes with ready-made templates for
common use cases built in.

There is considerable interest in the blockchain and decentralized applications within the
business community, but the number of real-life use cases remains limited. These are the early
days, and it is not unreasonable to postulate that many of those who want to get involved are

not deep experts in the minutiae of Ethereum, Solidity, encryption, data provenance, and other
technical issues.

In our view, the commercial growth of the ecosystem requires tools which allow non-experts to
set up smart contracts, connect to trusted data sources, make use of secure off-chain modules
for data filtering, aggregation, and refinement, deploy decentralized applications, track smart
contract execution, and visualise the flow of input data and blockchain events.

We address the need for a usability layer by providing powerful tools (such as an easy-to-use
visual editor), wrappers, and smart contract templates which are targeted at domain
professionals and business users. These tools hide the deep technology under the hood, handle
the data integrations and communications, and automate the routine steps in the deployment
and monitoring of smart contracts.

We foresee an ecosystem where there are several usability platforms and tools available. The
existing Streamr platform already implements some elements of the usability layer, with more
functionality being added in the coming months and years. The aim is to reach a stage where
you can build and deploy a useful and functioning data-driven smart contract in minutes. This is
more than a fantasy; our demo in EDCON?® Paris in February 2017 is a taster of what can
already be done (see Figure 2 for an illustration).

= streamr fdtor Caniases Dashbowrds Sweams 7 &

Give us feedback! ~

Figure 2. An alpha version of the Streamr editor workspace.

These are some of the planned features for the usability layer:

5 Henri Pihkala: "Connecting Ethereum with the real world: How to easily create data-driven smart contracts",
European Ethereum Development Conference (EDCON), Paris, 17-18 February, 2017
(https://www.youtube.com/watch?v=C110rcj-Fok)

e A visual editor for creating smart contracts, feeding in real-world data, and constructing
off-chain data processing pipelines.
Modules for communication with smart contracts and interacting with the blockchain.
Modules for off-chain processing: Data filtering, refinement, and aggregation,
deployment of decentralized applications, tracking smart contract execution, and
visualising the flow of input data and blockchain events.

e A Solidity editor where the smart contract code can be written and modified in a
context-sensitive environment.

e Built-in and tested open source Solidity templates for different use cases of Ethereum
smart contracts.

e Playback functionality for simulating smart contract functionality, debugging contract
code, and testing functionality before deployment.

e One-click deployment to submit a smart contract in either a testnet or in the mainnet.

2.2 Streamr Engine

Streamr Engine is the high-performance analytics engine that executes off-chain
within a decentralized computing provider (e.g. in a Docker container on Golem).

Raw data

R Situation

ﬁ |..|!!|.|.!|I|I!!iili!ii!l!| ﬁ rooms

o Automated

@ actions
streamr

Real-time

ENGINE

integrations

Figure 3. Typical data flow pattern and outcomes for the Streamr analytics engine.

Dapps, usually with web-based Uls and smart contract-based back-ends, currently have no way
to process raw data and turn it into information. A group of loT sensors or the stock market
might produce thousands or even millions of events per second, a quantity impossible or far too
expensive to push onto any blockchain for computation.

A streaming analytics layer is needed to turn raw data into refined information and ready for
consumption by Dapps and smart contracts. Raw data may need to be filtered, downsampled,
aggregated, combined with other data, run through anomaly detection algorithms, or processed
by advanced machine learning and pattern recognition models. Or you may want to do things
which simply cannot be done in smart contracts, such as calling external APls as part of the
processing chain.

The Streamr Engine listens to events on the Streamr Network, and models built using the
Streamr Editor refine incoming data and react to new events in real time. There are many ways
to react, including the following:

e Publishing refined data in another stream in the Streamr Network, perhaps shown in
real-time by a Papp Ul also connected to the network.

e Interacting with an loT device, for example controlling an actuator, opening a lock,
turning the lights on, or calling the elevator.
Sending an alert via email or push notification.
Calling a function in a smart contract.

Using the Streamr Network as messaging glue between Dapps and off-chain computation on
the Engine enables a whole new category of decentralized apps: apps driven by non-trivial data
volume. Obviously, the results can also be consumed by traditional centralized apps, while still
enjoying the benefits of decentralized messaging and analytics.

2.3 Data Market

Streamr data market is a global universe of shared data streams which anyone
can contribute and subscribe to. It’s a place for data monetisation and
machine-to-machine (M2M) data exchange. The data market supports anonymity,
but allows for the verification of digital identity where required.

The data market is a meeting place for data producers and data consumers. Data consumers
find value in the data offered, and wish to access it in order to use it as input for Papps, smart
contracts, or traditional apps.

The data is organised in data streams, the basic building block of the data market and a
primitive in the Streamr Network (see Chapter 2.4 below). Data streams contain events from
data sources that keep emitting new data points at either regular or irregular intervals. Here are
some typical settings where real-time data is produced in a streaming fashion:

e A stock market generates a new event every time there is a new bid or offer, and every
time a trade takes place.

e A public transport vehicle broadcasts its identity, status, speed, acceleration,
geolocation, and heading every few seconds.
A motion detector transmits a signal when a moving object is detected in its range.
lloT sensors attached to an electrical drive measure the temperature, speed, and
vibrations during the drive operation in a smart factory.

e Air quality sensors measure carbon monoxide, sulfur dioxide, nitrogen dioxide, and
ozone levels in an urban area.
Seismometers measure ground motion in an area with volcanic activity.
Smart clothing worn by professional athletes collects biometric data such as the
heartbeat, temperature, and acceleration.

The data market makes a wide selection of trustworthy timestamped data available for
subscription. Some of the data is sourced from established and professional data vendors and
redistributors, and some from public, open data sources. Importantly, the platform allows
anyone to contribute and monetize their data. Whilst companies have valuable data streaming
in from sensors and devices, private citizens are producing valuable information too.

For example, people wearing a smartwatch might place their heart rate data on sale on the data
market. Data can be offered anonymously, so privacy is not violated. Who would be interested
in such data? Well, a pharmaceutical company might buy it for research, or a public healthcare
organization might use it to find out how often people do sports, or what the stress level of the
public is. A smartwatch manufacturer might buy it to get diagnostics on how their heart rate
sensors perform. And the data producers earn daily income just by making their data available.

There is no reason why subscriptions in the data market should be initiated by human software
developers, data engineers, or data scientists. In fact, the decentralized market may well end up
being dominated by machine-to-machine transactions. Autonomous machines, robots, smart
appliances will all need data in their operations, and they are producing data which is valuable
to other participants in the ecosystem.

Automatic, value-adding refinement patterns will emerge. An Al might subscribe to a raw stock
market feed, apply proprietary pattern recognition to generate trading signals, and offer those
signals for sale on the same data market.

Whilst much of the content in the data market will be freely available for all, there will be data
that needs to be paid for, and there will be data where an end user license applies. In such
cases, a subscription license is needed. A license gives the right to access the data for a
specific period of time, on certain conditions, and for a fee. There's a close analogy to streaming
music: You don't get to own the subscribed data, any more than you get to own the rights to a
song by hearing it on Spotify or by downloading it from iTunes.

Data licenses are implemented as smart contracts (see Section 2.5.4). The great benefit of the
blockchain is that it offers a trustless and decentralized way to store the terms of use and the
access rights, and to ensure that data payments are made as agreed.

In a wider context, there's potential for a powerful network effect in the marketplace. The more
content there is, the more attractive the proposition becomes for both data contributors and to
data consumers. In Streamr data market, a web portal (implemented as a Papp) facilitates the
discovery of what data exist out there, provides a comprehensive toolkit for the creation and
management of data streams, and makes it easy to subscribe to data streams of choice.

2.4 Streamr Network

Streamr Network is the data transport layer in the technology stack. It consists of
Streamr Broker nodes which establish a P2P network. The network hosts a
publish/subscribe mechanism and supports decentralized storage of events. The
network throughput scales linearly with the number of participating nodes, and it
can process millions of events per second.

Data Source Other brokers

in the network
NN
Q@

N I v o Dapp
l ° ° 3
Streamr Client Streamr (@] o— Broker Streamr Client
(publisher) Pratacol (subscriber)
Pu\ﬂsh o Delivery
JSON AP I I via
websocket
(5] (5]
Smart Smart
Contracts Contracts

Figure 4. An example of an event traveling through the broker network from a data source to a
subscriber happ.

The Streamr Network (Figure 4) is a transport layer of the Streamr stack. The network handles
all messaging in the decentralized data pipeline. The layer consists of primitives (events and
streams) and broker nodes. The broker nodes operate on the primitives, and the collection of
broker nodes constitutes the P2P network which handles decentralized storage and
decentralized messaging.

The infrastructure layer uses the underlying Ethereum stack for its operations. Node
coordination requires robust consensus, which is implemented through smart contracts. The raw
event data itself usually doesn’t go into the blockchain, which together with partitioning allows
the Streamr Network to scale to millions of events per second and higher.

The Streamr Network combines the best parts of scalable cloud-based real-time data transports
(e.g. Kafka, ZeroMQ, ActiveMQ) and what’s available in the decentralised P2P/crypto
community (Whisper®, Bitmessage’). The cloud-based frameworks use efficient sharding and
persistence schemes to reach high throughput, but only in a trusted local network environment.
The peer-to-peer protocols showcase effective strategies for routing, peer discovery, NAT
traversal, location obfuscation, and so on, but fail to deliver the throughput needed for data
intensive real-world applications.

2.4.1 Events

An event? is a timestamped piece of information. Every event contains headers and content.
The headers specify the metadata for the event, such as its timestamp, origin, and content type.
The event protocol supports arbitrary types and formats of content payload, e.g. JSON
messages or binary images. The content type indicates what format the content is in. Event
headers and content are encoded in a binary format for transmission.

All events on the Streamr network are cryptographically signed. All events have an origin, for

example an Ethereum address. A signature is calculated from a private key and the rest of the
message. The signature is used to prove the message origin as well as the message integrity.
Since the event format allows for any kind of origins and signatures, the system is future-proof.

The following table lists the information contained in an event.

Field Description

version Version of the event protocol

stream Stream id (Ethereum address of the stream smart contract)
partition Stream partition (see section on partitioning)

timestamp Event timestamp (ISO 8601)

contentType Instruction on how to parse the body (e.g. JSON)
encryptionType Encryption algorithm used to encrypt the content

6 Gav Wood: "Whisper PoC 2 Protocol Spec" (https://github.com/ethereum/wiki/wiki/Whisper-PoC-2-Protocol-Spec)
7 See https://bitmessage.org/wiki/Main_Page.
8 Streamr events should not be confused with events in Ethereum smart contracts.

10

content Data payload

originType Instruction how to interpret the origin

origin Data originator

signatureType Instruction on how to interpret the signature

signature Cryptographic signature proves origin and integrity of message

2.4.2 Streams

All events belong to a stream. There can be any number of streams, each of which groups
together events that are logically related and stored in an ascending chronological order.
Stream metadata is stored in an Ethereum smart contract. Each stream is identified by the
Ethereum address of the contract. For scalability, events (i.e. the actual data points) are not
stored in smart contracts or in the blockchain.

A data stream holds a set of permissions. The permissions control who can read events from
the stream (subscribe), and who can write new events to the stream (publish). The stream
owner controls the permissions, but she can also grant or delegate the permission control to
third parties where needed.

The following table lists the metadata for a stream.

Field Description

id Stream id (Ethereum address)

name Stream name

description Stream description

owner Stream owner

permissions A mapping from Ethereum address to permission levels

2.4.3 Publish/Subscribe

Data delivery in the network follows the publish/subscribe paradigm?®. Events published to a
stream are promptly delivered to all authorized and connected subscribers of the stream.

® Wikipedia: Publish/subscribe pattern (https://en.wikipedia.org/wiki/Publish-subscribe_pattern)
11

Subscribing to streams can be restricted to certain users only, or be free to the public. Similarly,
the permission to publish content to a stream can be held by one, many, or everyone.

The publish/subscribe paradigm enables many messaging topologies used in real-world
applications:

One-to-many (for example, a news channel or stock ticker)
Many-to-many (for example, a group chat or a multiplayer game)
One-to-one (for example, a private chat or an analytics pipeline)
Many-to-one (for example, a voting system)

Note that publishing an event need not imply that the event is delivered to any clients: It may be
the case that there are no subscribers. Still, the event is persisted and delivered to a number of
broker nodes for redundancy.

Technically, there are two types of subscribers. The majority of the data flow goes to
subscribers connected to the network via a direct connection to a broker node (see Section
2.4.4. below). They can be, for example, web front-ends of Dapps, event processing chains
running on Streamr Engine, or loT devices controlled by data from the network.

Smart contracts are a special type of subscriber supported by the Streamr Network. Broker
nodes in the network are incentivized to deliver events to subscribing smart contracts. In this
scenario, of course, blockchain scalability limits apply. The mechanism allows the network to act
as an oracle, meaning that data can be pushed to smart contracts without help from a 3rd party
oracle. Since all data in the network is signed at the source, it can always be verified and
trusted.

2.4.4 Broker node

The Streamr Broker node is the core software component in the network. A broker node
handles tasks such as publishing events, subscribing to streams, handling storage, and
communicating with Ethereum nodes via JSON RPC calls. The broker node exposes its
functionality to connected applications via APls.

The broker API can be used from apps using standard HTTP and Websocket libraries in any
language. For ease of use, we’ll provide reference implementations in a number of languages.
The primary client library platform will be written in JavaScript. It can be used to deliver data to
web-based Dapps running in the browser as well as to back-end applications running node.js. A
Websocket APl handles event delivery from data sources to the network and from the network
to client Papps. For stream management, a JSON APl is used.

The Websocket streaming API takes care of the following tasks:

12

Authenticate a session

Publish events

Subscribe to events in streams
Deliver events to subscribed clients
Query historical events in streams

The JSON API exposes the following functionality:

Create a stream

Configure a stream

Delete a stream

Get info about a stream

Find stream(s) by search criteria

Publish events (alternative to Websocket API)

Query historical events in streams (alternative to Websocket API)

Most of the traffic between brokers consists of event messages, but there is also traffic related
to routing and peer discovery. An important coordination task between brokers is partition
assignment, in which a reliable consensus must be achieved. This mechanism is implemented
as a smart contract which leverages the power of the Ethereum network (see Section 2.4.5
below).

2.4.5 Partitioning (sharding)

Event traffic in the whole network is divided into independent parts called partitions. Each broker
node handles the traffic belonging to a set of partitions. This is how scalability is achieved: not
all nodes handle all the traffic. This is similar to the partitioning scheme found in e.g. Apache
Kafka.

The partition for a particular event is calculated by hashing the stream id. This is a fast operation
and done locally. Using the stream id as the partition key means that all events in a particular
stream always go to the same partition. This allows the network to maintain the ordering of
events within a stream, and to store them efficiently.

It may happen that a stream receives such a volume of messages that a single broker cannot
handle them. In this case, an another round of partitioning is applied to the streams themselves,
and the traffic within a stream is split to independent parts. In this case, we hash the (stream id,
stream partition) tuple to assign the network partition, and the publisher provides the partition
key which assigns the event to a partition within the stream. The order of events for a stream
partition key is preserved.

The number of partitions in the network remains constant until automatically incremented over
time. As described in the next section, there is a coordinator smart contract which controls

13

network partitioning. The number of partitions is proportional to the number of broker nodes
participating in the network.

2.4.6 Node coordination

In distributed data systems such as Apache Kafka and Apache Cassandra, node coordination is
usually achieved by using a component like Apache Zookeeper. There is a centralized process
for establishing consensus in processes like leader election. Alternatively, some systems use
manual assignment of coordinator nodes which have special privileges in the network.

In a decentralized network, such centralized or privileged components cannot exist. Instead, the
Streamr network uses the underlying Ethereum network to establish consensus for node
coordination in the P2P network.

The key coordination task is the assignment of network partitions to broker nodes in the
network, and the maintenance of changes in this information when nodes appear or disappear.
Instead of a centralized component like Zookeeper, this task is implemented by a smart
contract: the network coordinator. The network coordinator contract is deployed on the
Ethereum blockchain. Broker nodes find out the current network state by watching and querying
the smart contract. Upgrading the network is achieved simply by switching to a new network
coordinator contract.

Rebalancing the partition assignments is one of the tasks of the network coordinator contract.
Only useful changes are made, and if there are none, the function does nothing. When the
network is unbalanced, calling the function awards DATAcoin to the caller. This incentive
ensures that network rebalancing takes place when needed.

The nodes assigned to a partition receive all the data for that partition. Some or all of them
calculate rolling checksums on the data, and report the checksums to the network coordinator
smart contract at certain intervals. In a large public network, there are enough nodes for each
partition to make it difficult for them to collude. Partition assignment by the network coordinator
smart contract is also difficult to influence.

2.4.7 Incentivization

Subscribers are the consumers of data in the network. DATAcoin, the network’s usage token,
enables subscribers to subscribe to streams. Other parties gain DATAcoin by contributing to the
network: the broker nodes (the “miners” of this network), and the data publishers.

Broker nodes are incentivized to do two things: report checksums for their assigned partitions to
the network coordinator smart contract (see Section 2.4.6. above), and deliver data to any smart
contract subscribers (see Section 2.4.3). Both operations cost some Ethereum gas, paid by the
broker. This cost is covered by DATAcoin the brokers receive for making the network function.

14

-DATA -ETH

-DATA
Il(:z w /—\
1) [Broker _
N I /4 -—w > Bapp

!

Smart
Contracts

Figure 5. A schematic diagram of the incentive structure in the Streamr Network.

Checksums for a partition are calculated and reported by multiple broker nodes, and the brokers
are rewarded only if the brokers agree on the checksums on a coherence threshold set in the
coordinator smart contract (for example, 90% of assigned brokers need to report a particular
checksum for it to be considered valid). If a node reports deviant checksums, none at all, or the
checksums are not coherent, no reward is obtained and offending nodes become less likely to
be assigned responsibility for a partition in the future.

As discussed, smart contracts can be subscribers to a stream. The subscriber sets a bounty in
DATACcoin for delivering events to the smart contract. The bounty is collected by whoever
delivers the data first. Usually this would be the broker node directly connected to the publisher,
as that broker is in a forerunner position to make the delivery. Other nodes or external
subscribers may watch this process and identify opportunities to deliver the data, if not delivered
by the usual suspect.

A mechanism is also needed to prevent flooding in the network. A minimal cost must be
associated with all publish operations as well as deliveries to subscribers. The network can
aggregate the costs and commit every now and then to the underlying blockchain for scalability,
similar to how state channels or micropayment channels work in some blockchain networks.

2.4.8 Event persistence

Events in data streams are persisted in the peer-to-peer network. This effectively turns the
network into a decentralized time series database. The decentralization brings in a number of

15

https://tlsnotary.org/TLSNotary.pdf
https://eprint.iacr.org/2016/168.pdf
https://storj.io/storj.pdf

